metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$[\eta^5$ -(Phenylethynyl)cyclopentadienyl](η^4 -tetraphenylcyclobutadiene)cobalt(I)

Donagh Courtney,^a Anthony R. Manning,^a C. John McAdam^b and Jim Simpson^{b*}

^aSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 4 May 2011; accepted 4 May 2011

Key indicators: single-crystal X-ray study; T = 91 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.130; data-to-parameter ratio = 9.6.

In the title compound, $[Co(C_{13}H_9)(C_{28}H_{20})]$, the Co atom is sandwiched between cyclopentadienyl and cyclobutadienyl rings that are inclined at a dihedral angle of 2.6 (3)°. The four phenyl rings are tilted with respect to the cyclobutadienyl plane so that the C₄Ph₄ unit constitutes a four-bladed propeller. The phenyl ring of the phenyl-alkyne substituent is inclined to the cyclopentadienyl ring at an angle of 34.92 (18)°. The crystal structure is stabilized solely by C– $H \cdots \pi$ interactions which generate a three-dimensional network.

Related literature

For the synthesis, see: Stephens & Castro (1963). For related structures, see: Classen *et al.* (2002); Cuffe *et al.* (2005); Kjaergaard *et al.* (2008); Zora *et al.* (2006). For recent applications of $[Co(\eta^4-C_4Ph_4)(\eta^5-C_5H_4R)]$ compounds, see: O'Donohue *et al.* (2011*a,b*); Nguyen *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Co}(\mathrm{C}_{13}\mathrm{H}_9)(\mathrm{C}_{28}\mathrm{H}_{20})]\\ M_r = 580.57\\ \mathrm{Monoclinic}, P2_1/c\\ a = 11.2685 \ (5) \ \mathrm{\AA}\\ b = 14.9167 \ (7) \ \mathrm{\AA} \end{array}$

c = 16.8122 (8) Å $\beta = 97.937 (3)^{\circ}$ $V = 2798.9 (2) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.64 \text{ mm}^{-1}$ T = 91 K

Data collection

Bruker APEXII CCD area-detector	25140 measured reflections
diffractometer	3651 independent reflections
Absorption correction: multi-scan	3130 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2006)	$R_{\rm int} = 0.050$
$T_{\rm min} = 0.829, \ T_{\rm max} = 1.000$	$\theta_{\rm max} = 22.6^{\circ}$

 $0.46 \times 0.34 \times 0.13 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 379 parameters $wR(F^2) = 0.130$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 1.05$ e Å $^{-3}$ 3651 reflections $\Delta \rho_{min} = -0.48$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C11–C16 and C17–C22 phenyl rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C32-H32\cdots Cg1^{i}$	0.95	2.66	3.460 (4)	142
$C14 - H14 \cdots Cg2^{ii}$	0.95	2.86	3.674 (4)	144
$C28-H28\cdots Cg2^{iii}$	0.95	2.93	3.578 (4)	127

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2* and *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) and *TITAN* (Hunter & Simpson, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *TITAN*; molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

The authors thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5089).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Classen, J., Gleiter, R. & Rominger, F. (2002). Eur. J. Inorg. Chem. pp. 2040–2046.
- Cuffe, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). *Organometallics*, 24, 2051–2060.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hunter, K. A. & Simpson, J. (1999). *TITAN2000*. University of Otago, New Zealand.
- Kjaergaard, H. G., McAdam, C. J., Manning, A. R., Mueller-Bunz, H., O'Donohue, P., Ortin, Y., Robinson, B. H. & Simpson, J. (2008). *Inorg. Chim. Acta*, **361**, 1616–1623.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nguyen, H. V., Yeamine, M. R., Amin, J., Motevalli, M. & Richards, C. J. (2008). J. Organomet. Chem. 693, 3668–3676.

- O'Donohue, P., McAdam, C. J., Courtney, D., Ortin, Y., Müller-Bunz, H., Manning, A. R., McGlinchey, M. J. & Simpson, J. (2011a). J. Organomet. Chem. 696, 1496-1509.
- O'Donohue, P., McAdam, C. J., Courtney, D., Ortin, Y., Müller-Bunz, H., Manning, A. R., McGlinchey, M. J. & Simpson, J. (2011b). J. Organomet. Chem. 696, 1510–1527.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stephens, R. D. & Castro, C. E. (1963). J. Org. Chem. 28, 3313-3315.
- Stephens, R. D. & Call, C. E. (1965). J. Org. Chem. 26, 5515–5515.
 Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
 Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330.

Acta Cryst. (2011). E67, m742-m743 [doi:10.1107/S1600536811016928]

$[\eta^5-(Phenylethynyl)cyclopentadienyl](\eta^4-tetraphenylcyclobutadiene)cobalt(I)$

D. Courtney, A. R. Manning, C. J. McAdam and J. Simpson

Comment

Recent interest in $[Co(\eta^4-C_4Ph_4)(\eta^5-C_5H_4R]$ type compounds has focused on their applications in asymmetric synthesis and catalysis, and as components of molecular machines (Nguyen *et al.*, 2008; O'Donohue *et al.*, 2011*a*). Despite this attention, comparison with its isoelectronic ferrocene cousin reveals relatively few crystallographically characterized examples. Alkyne derivatives in particular are limited to five structures (Classen *et al.*, 2002). We present here data for the archetypal derivative $[Co(\eta^4-C_4Ph_4)(\eta^5-C_5H_4-C\equiv C-Aryl)]$, Aryl = phenyl.

Bond lengths and angles within the $[Co(\eta^4-C_4Ph_4)(\eta^5-C_5H_4-]$ fragment are close to those reported in other examples (Classen *et al.*, 2002; Kjaergaard *et al.*, 2008; O'Donohue *et al.*, 2011*a,b*). The distances between the cyclopentadienyl (Cp) and cyclobutadienyl (Cb) rings and the cobalt atom are 1.6759 (17) Å and 1.6990 (17) Å respectively and the angle between these planes is 2.6 (3)°. The four phenyl rings are tilted in an alternating 20.1/41.9/25.0/46.0° pattern with respect to the Cb plane so that the C₄Ph₄ unit constitutes a four-bladed propeller. The C=C length of 1.207 (6) Å is similar to those observed for $[Co(\eta^4-C_4Ph_4)(\eta^5-C_5H_4-]$ butadiynes (Classen *et al.*, 2002) but is slightly longer than its ferrocenyl analogue Fc—C=C-Ph, 1.192 (3) (Zora *et al.*, 2006) and other simple ferrocenyl ethynylaryl compounds (Cuffe *et al.*, 2005). The alkyne phenyl group is tilted 34.92 (18)° with respect to the Cp plane in marked contrast to the angle of 89.06 (13)° observed for Fc—C=C-phenyl (Zora *et al.*, 2006).

In the crystal structure C–H··· π interactions (Table 1) involving contacts from the C29···C33 Cp ring to Cg1, the centroid of the C11···C16 ring, and the C11···C16 phenyl ring to Cg2, the centroid of the C17···C22 ring, link the molecules into chains along the c axis (Fig. 2). An additional C28–H28···Cg2 contact generates a three-dimensional network structure (Fig. 3).

Experimental

The title compound was prepared by the Castro-Stephens coupling (Stephens & Castro, 1963) of $[Co(\eta^4-C_4Ph_4)(\eta^5-C_5H_4-C=C-H)]$ and an equimolar amount of iodobenzene by stirring with 2.5 mol% CuI in N₂ degassed triethylamine for 16 hrs. Solvent was removed under vacuum and the residue chromatographed on silica with a CH₂Cl₂ eluent. X-ray quality crystals were grown from CH₂Cl₂ layered with hexane.

Refinement

All H-atoms were geometrically positioned, and refined using a riding model with d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}$ (C).

Figures

$[\eta^{5}-(Phenylethynyl)cyclopentadienyl](\eta^{4}-tetraphenylcyclobutadiene) cobalt(l)$

Crystal data
[Co(C ₁₃ H ₉)(C ₂₈ H ₂₀)]
$M_r = 580.57$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 11.2685 (5) Å
<i>b</i> = 14.9167 (7) Å
c = 16.8122 (8) Å
$\beta = 97.937 \ (3)^{\circ}$
$V = 2798.9 (2) \text{ Å}^3$
Z = 4

F(000) = 1208
$D_{\rm x} = 1.378 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5542 reflections
$\theta = 2.3 - 22.4^{\circ}$
$\mu = 0.64 \text{ mm}^{-1}$
T = 91 K
Irregular fragment, orange
$0.46 \times 0.34 \times 0.13 \text{ mm}$

Data collection

3651 independent reflections
3130 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.050$
$\theta_{\text{max}} = 22.6^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2006)	$h = -12 \rightarrow 12$
$T_{\min} = 0.829, T_{\max} = 1.000$	$k = -16 \rightarrow 16$
25140 measured reflections	$l = -16 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.130$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0693P)^{2} + 4.4297P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3651 reflections	$(\Delta/\sigma)_{max} < 0.001$
379 parameters	$\Delta \rho_{max} = 1.05 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. IR v/cm⁻¹ v(C≡C) 2214 (ATR). ¹H NMR (CDCl₃): δ 7.5 (8*H*, m, Cb-*o*-Ph), 7.42 (2*H*, m, C₂-*m*-Ph), 7.27 (1*H*, m, C₂-*p*-Ph), 7.2 (12*H*, m, Cb-*m/p*-Ph), 7.14 (2*H*, m, C₂-*o*-Ph), 4.82 (2*H*, t, *α*-Cp), 4.65 (2*H*, t, *β*-Cp). ¹³C NMR (CDCl₃): δ 135.6 (Cb-*ipso*-Ph), 131.4 (C₂-*o*-Ph), 128.9 (C₂-*m*-Ph & Cb-*o*-Ph), 128.1 (Cb-*m*-Ph), 127.6 (C₂-*p*-Ph), 126.4 (Cb-*p*-Ph), 123.7 (C₂-*ipso*-Ph), 87.8 (C≡CPh), 85.7 (*α*-Cp), 85.2 (C≡CPh), 84.9 (*β*-Cp), 79.2 (*ipso*-Cp), 76.2 (C₄Ph₄). UV-Vis, λ_{max}/nm (ε/dm³mol⁻¹cm⁻¹) (CH₂Cl₂): 269 (44 000), 300 (sh, 30 000), 330 (sh, 24 000) 385 (sh, 4800).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6521 (3)	0.2050 (2)	1.0157 (2)	0.0227 (8)
C2	0.5229 (3)	0.2125 (2)	1.0222 (2)	0.0230 (8)
C3	0.4966 (3)	0.1499 (2)	0.9545 (2)	0.0237 (8)
C4	0.6247 (3)	0.1436 (2)	0.9479 (2)	0.0236 (8)
Col	0.56188 (4)	0.26618 (3)	0.92077 (3)	0.0238 (2)
C5	0.7628 (3)	0.2358 (2)	1.0628 (2)	0.0255 (9)
C6	0.8710 (3)	0.2326 (2)	1.0314 (2)	0.0300 (9)
H6	0.8719	0.2138	0.9775	0.036*

C7	0.9761 (4)	0.2564 (3)	1.0777 (3)	0.0369 (10)
H7	1.0495	0.2522	1.0561	0.044*
C8	0.9763 (4)	0.2865 (3)	1.1556 (3)	0.0394 (10)
H8	1.0496	0.3022	1.1875	0.047*
C9	0.8702 (3)	0.2934 (3)	1.1867 (2)	0.0362 (10)
Н9	0.8696	0.3164	1.2393	0.043*
C10	0.7642 (3)	0.2669 (2)	1.1414 (2)	0.0300 (9)
H10	0.6915	0.2700	1.1639	0.036*
C11	0.4524 (3)	0.2540 (2)	1.0794 (2)	0.0221 (8)
C12	0.4748 (3)	0.3418 (2)	1.1069 (2)	0.0254 (8)
H12	0.5361	0.3759	1.0876	0.030*
C13	0.4084 (3)	0.3795 (2)	1.1618 (2)	0.0281 (9)
H13	0.4254	0.4389	1.1805	0.034*
C14	0.3184 (3)	0.3316 (3)	1.1894 (2)	0.0287 (9)
H14	0.2728	0.3577	1.2269	0.034*
C15	0.2945 (3)	0.2448 (3)	1.1621 (2)	0.0269 (9)
H15	0.2318	0.2117	1.1807	0.032*
C16	0.3611 (3)	0.2061 (2)	1.1083 (2)	0.0221 (8)
H16	0.3446	0.1463	1.0907	0.027*
C17	0.3896 (3)	0.1023 (2)	0.9165 (2)	0.0232 (8)
C18	0.4002 (4)	0.0193 (2)	0.8804 (2)	0.0311 (9)
H18	0.4771	-0.0069	0.8810	0.037*
C19	0.2997 (4)	-0.0253(3)	0.8438 (2)	0.0380 (10)
H19	0.3085	-0.0812	0.8182	0.046*
C20	0.1878 (4)	0.0102 (3)	0.8439 (2)	0.0387 (11)
H20	0.1192	-0.0214	0.8193	0.046*
C21	0.1748(3)	0.0917(3)	0.8796 (2)	0.0350 (10)
H21	0.0971	0 1165	0.8798	0.042*
C22	0.2753 (3)	0.1382 (3)	0.9157 (2)	0.0295 (9)
H22	0.2659	0 1948	0.9399	0.035*
C23	0.6966 (3)	0.0865(2)	0.9016 (2)	0.0252 (8)
C24	0.6679 (3)	0.0000(2)	0.8189(2)	0.0222(0) 0.0321(9)
H24	0.6005	0.1066	0.7913	0.032*
C25	0.7359 (4)	0.0216(3)	0.7764 (3)	0.030
H25	0.7150	0.0150	0.7200	0.0372 (10)
C26	0.8343(4)	-0.0232(3)	0.8155 (3)	0.0421 (11)
H26	0.8820	-0.0597	0.7862	0.050*
C27	0.8628(4)	-0.0144(3)	0.8078 (3)	0.030
H27	0.020(4)	-0.0458	0.0252	0.0387 (10)
C28	0.7290	0.0398 (2)	0.9292 0.9404 (2)	0.0301 (9)
H28	0.8147	0.0452	0.0060	0.036*
C29	0.8147	0.0452 0.3051 (2)	0.9909	0.030°
C2)	0.0210(4)	0.3951(2)	0.9017(2)	0.0333(10)
H30	0.4484	0.5952(2)	0.9356	0.0298 (9)
C31	0.4490 (3)	0.3399 (3)	0.8368 (2)	0.0323 (0)
H31	0.3667	0.3281	0.8194	0.0323 (9)
C32	0.5459 (3)	0.3251	0.8023 (2)	0.039
U32 H32	0.5399	0.2662	0.7573	0.0278 (9)
C33	0.5573 (3)	0.2002	0.8449 (2)	0.0303 (0)
000	0.0525 (5)	0.5570 (2)	0.0777 (2)	0.0505(7)

H33	0.7310	0.3241	0.8344	0.036*
C34	0.7017 (4)	0.4436 (3)	0.9644 (3)	0.0388 (10)
C35	0.7710 (4)	0.4866 (3)	1.0105 (3)	0.0410 (11)
C36	0.8551 (4)	0.5366 (3)	1.0640 (3)	0.0411 (11)
C37	0.8290 (4)	0.6205 (3)	1.0890 (3)	0.0480 (12)
H37	0.7542	0.6475	1.0698	0.058*
C38	0.9135 (4)	0.6667 (3)	1.1432 (3)	0.0476 (12)
H38	0.8948	0.7245	1.1617	0.057*
C39	1.0170 (4)	0.6311 (3)	1.1682 (2)	0.0413 (11)
H39	1.0727	0.6637	1.2048	0.050*
C40	1.0488 (4)	0.5471 (3)	1.1432 (3)	0.0474 (12)
H40	1.1256	0.5227	1.1615	0.057*
C41	0.9665 (4)	0.4998 (3)	1.0913 (3)	0.0438 (11)
H41	0.9861	0.4417	1.0740	0.053*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.026 (2)	0.0215 (19)	0.0215 (19)	0.0007 (15)	0.0054 (15)	0.0031 (15)
C2	0.0230 (19)	0.0213 (19)	0.025 (2)	-0.0014 (15)	0.0043 (16)	0.0013 (16)
C3	0.027 (2)	0.0217 (19)	0.0235 (19)	0.0017 (16)	0.0083 (16)	0.0021 (16)
C4	0.028 (2)	0.0210 (19)	0.0219 (19)	0.0008 (16)	0.0028 (15)	0.0031 (16)
Co1	0.0257 (3)	0.0224 (3)	0.0237 (3)	0.0001 (2)	0.0054 (2)	0.0023 (2)
C5	0.025 (2)	0.023 (2)	0.029 (2)	0.0011 (16)	0.0044 (17)	0.0046 (16)
C6	0.025 (2)	0.035 (2)	0.031 (2)	0.0000 (17)	0.0060 (18)	0.0002 (17)
C7	0.022 (2)	0.046 (3)	0.042 (3)	0.0044 (18)	0.0057 (19)	-0.001 (2)
C8	0.024 (2)	0.047 (3)	0.044 (3)	-0.0002 (19)	-0.0071 (19)	0.004 (2)
С9	0.035 (2)	0.040 (2)	0.032 (2)	0.0029 (19)	-0.0012 (19)	0.0007 (19)
C10	0.026 (2)	0.030 (2)	0.033 (2)	0.0017 (17)	0.0046 (18)	0.0046 (17)
C11	0.0200 (19)	0.027 (2)	0.018 (2)	0.0014 (15)	-0.0005 (15)	0.0005 (15)
C12	0.026 (2)	0.026 (2)	0.023 (2)	-0.0035 (16)	0.0019 (16)	0.0022 (16)
C13	0.035 (2)	0.024 (2)	0.024 (2)	0.0007 (17)	-0.0012 (17)	-0.0035 (16)
C14	0.029 (2)	0.036 (2)	0.021 (2)	0.0077 (18)	0.0047 (16)	-0.0025 (17)
C15	0.022 (2)	0.037 (2)	0.023 (2)	-0.0005 (16)	0.0046 (16)	0.0013 (17)
C16	0.0212 (19)	0.0227 (19)	0.0213 (19)	-0.0012 (15)	-0.0008 (15)	-0.0011 (15)
C17	0.030 (2)	0.024 (2)	0.0172 (18)	-0.0031 (16)	0.0054 (15)	0.0032 (16)
C18	0.037 (2)	0.028 (2)	0.030 (2)	-0.0048 (18)	0.0114 (18)	0.0021 (18)
C19	0.056 (3)	0.029 (2)	0.029 (2)	-0.019 (2)	0.008 (2)	-0.0058 (18)
C20	0.040 (3)	0.051 (3)	0.025 (2)	-0.023 (2)	0.0027 (18)	-0.0011 (19)
C21	0.024 (2)	0.051 (3)	0.028 (2)	-0.0068 (19)	-0.0016 (17)	0.004 (2)
C22	0.034 (2)	0.032 (2)	0.022 (2)	0.0005 (18)	0.0035 (16)	0.0023 (17)
C23	0.026 (2)	0.0194 (19)	0.032 (2)	-0.0026 (16)	0.0102 (17)	0.0023 (16)
C24	0.036 (2)	0.033 (2)	0.028 (2)	-0.0001 (18)	0.0074 (18)	-0.0001 (18)
C25	0.053 (3)	0.036 (2)	0.032 (2)	-0.008 (2)	0.017 (2)	-0.0084 (19)
C26	0.041 (3)	0.030 (2)	0.062 (3)	-0.009 (2)	0.033 (2)	-0.013 (2)
C27	0.028 (2)	0.028 (2)	0.061 (3)	-0.0002 (18)	0.012 (2)	-0.003 (2)
C28	0.032 (2)	0.027 (2)	0.032 (2)	-0.0004 (17)	0.0075 (18)	-0.0010 (17)
C29	0.043 (2)	0.021 (2)	0.033 (2)	-0.0109 (18)	-0.0080 (19)	0.0093 (18)

C30	0.033 (2)	0.023 (2)	0.033 (2)	0.0036 (17)	0.0048 (17)	0.0052 (17)
C31	0.036 (2)	0.030 (2)	0.029 (2)	0.0023 (18)	-0.0026 (18)	0.0074 (17)
C32	0.039 (2)	0.027 (2)	0.023 (2)	0.0005 (18)	0.0045 (18)	0.0047 (17)
C33	0.033 (2)	0.032 (2)	0.027 (2)	-0.0016 (18)	0.0084 (17)	0.0062 (17)
C34	0.046 (3)	0.031 (2)	0.040 (3)	-0.001 (2)	0.007 (2)	0.005 (2)
C35	0.043 (3)	0.036 (2)	0.043 (3)	-0.006 (2)	0.003 (2)	-0.002 (2)
C36	0.045 (3)	0.043 (3)	0.037 (2)	-0.012 (2)	0.013 (2)	-0.005 (2)
C37	0.046 (3)	0.041 (3)	0.058 (3)	-0.004 (2)	0.010 (2)	-0.007 (2)
C38	0.057 (3)	0.040 (3)	0.046 (3)	-0.017 (2)	0.011 (2)	-0.012 (2)
C39	0.045 (3)	0.045 (3)	0.036 (2)	-0.018 (2)	0.014 (2)	-0.012 (2)
C40	0.045 (3)	0.055 (3)	0.040 (3)	-0.008 (2)	0.001 (2)	-0.001 (2)
C41	0.051 (3)	0.042 (3)	0.037 (3)	-0.003 (2)	0.002 (2)	0.003 (2)

Geometric parameters (Å, °)

C1—C5	1.456 (5)	C18—H18	0.9500
C1—C4	1.462 (5)	C19—C20	1.368 (6)
C1—C2	1.478 (5)	С19—Н19	0.9500
C1—Co1	1.991 (3)	C20—C21	1.373 (6)
C2—C11	1.467 (5)	C20—H20	0.9500
C2—C3	1.470 (5)	C21—C22	1.393 (5)
C2—Co1	1.987 (3)	C21—H21	0.9500
C3—C4	1.466 (5)	C22—H22	0.9500
C3—C17	1.468 (5)	C23—C28	1.389 (5)
C3—Co1	1.997 (3)	C23—C24	1.392 (5)
C4—C23	1.471 (5)	C24—C25	1.382 (6)
C4—Co1	1.991 (3)	C24—H24	0.9500
Co1—C33	2.039 (4)	C25—C26	1.382 (6)
Co1—C32	2.059 (4)	С25—Н25	0.9500
Co1—C29	2.059 (4)	C26—C27	1.382 (6)
Co1—C30	2.078 (4)	С26—Н26	0.9500
Co1—C31	2.079 (4)	C27—C28	1.383 (6)
C5—C6	1.395 (5)	С27—Н27	0.9500
C5—C10	1.398 (5)	C28—H28	0.9500
C6—C7	1.371 (6)	C29—C34	1.416 (6)
С6—Н6	0.9500	C29—C30	1.422 (6)
С7—С8	1.384 (6)	C29—C33	1.439 (6)
С7—Н7	0.9500	C30—C31	1.407 (5)
C8—C9	1.374 (6)	С30—Н30	0.9500
С8—Н8	0.9500	C31—C32	1.404 (5)
C9—C10	1.382 (5)	C31—H31	0.9500
С9—Н9	0.9500	C32—C33	1.396 (5)
C10—H10	0.9500	С32—Н32	0.9500
C11—C16	1.394 (5)	С33—Н33	0.9500
C11—C12	1.400 (5)	C34—C35	1.207 (6)
C12—C13	1.386 (5)	C35—C36	1.424 (6)
C12—H12	0.9500	C36—C37	1.366 (6)
C13—C14	1.372 (5)	C36—C41	1.388 (6)
С13—Н13	0.9500	C37—C38	1.404 (6)

C14—C15	1.388 (5)	С37—Н37	0.9500
C14—H14	0.9500	C38—C39	1.297 (6)
C15—C16	1.380 (5)	C38—H38	0.9500
C15—H15	0.9500	C39—C40	1.383 (6)
С16—Н16	0.9500	С39—Н39	0.9500
C17—C18	1.390 (5)	C40—C41	1.377 (6)
C17—C22	1.393 (5)	C40—H40	0.9500
C18—C19	1.382 (6)	C41—H41	0.9500
C5—C1—C4	133.9 (3)	C16—C15—H15	119.7
C5—C1—C2	135.6 (3)	C14—C15—H15	119.7
C4—C1—C2	90.0 (3)	C15-C16-C11	120.5 (3)
C5—C1—Co1	126.6 (2)	C15—C16—H16	119.7
C4—C1—Co1	68.44 (19)	С11—С16—Н16	119.7
C2C1Co1	68.01 (19)	C18—C17—C22	118.2 (3)
C11—C2—C3	134.9 (3)	C18—C17—C3	120.4 (3)
C11—C2—C1	135.1 (3)	C22—C17—C3	121.4 (3)
C3—C2—C1	89.5 (3)	C19—C18—C17	120.6 (4)
C11—C2—Co1	126.7 (2)	C19-C18-H18	119.7
C3—C2—Co1	68.71 (19)	C17—C18—H18	119.7
C1—C2—Co1	68.35 (19)	C20-C19-C18	120.8 (4)
C4—C3—C17	134.0 (3)	С20—С19—Н19	119.6
C4—C3—C2	90.2 (3)	C18—C19—H19	119.6
C17—C3—C2	135.3 (3)	C19—C20—C21	119.8 (4)
C4—C3—Co1	68.21 (19)	C19—C20—H20	120.1
C17—C3—Co1	127.5 (2)	С21—С20—Н20	120.1
C2—C3—Co1	67.98 (19)	C20—C21—C22	120.1 (4)
C1—C4—C3	90.3 (3)	C20-C21-H21	120.0
C1—C4—C23	134.7 (3)	C22—C21—H21	120.0
C3—C4—C23	134.2 (3)	C17—C22—C21	120.5 (4)
C1—C4—Co1	68.49 (19)	С17—С22—Н22	119.7
C3—C4—Co1	68.65 (19)	C21—C22—H22	119.7
C23—C4—Co1	127.9 (2)	C28—C23—C24	118.2 (3)
C2—Co1—C4	63.05 (14)	C28—C23—C4	120.1 (3)
C2—Co1—C1	43.63 (14)	C24—C23—C4	121.7 (3)
C4—Co1—C1	43.07 (14)	C25—C24—C23	121.0 (4)
C2—Co1—C3	43.31 (14)	C25—C24—H24	119.5
C4—Co1—C3	43.14 (14)	C23—C24—H24	119.5
C1—Co1—C3	62.71 (14)	C24—C25—C26	120.2 (4)
C2—Co1—C33	159.37 (15)	С24—С25—Н25	119.9
C4—Co1—C33	115.52 (15)	С26—С25—Н25	119.9
C1—Co1—C33	119.79 (15)	C25—C26—C27	119.4 (4)
C3—Co1—C33	150.13 (15)	С25—С26—Н26	120.3
C2—Co1—C32	160.72 (15)	C27—C26—H26	120.3
C4—Co1—C32	117.56 (15)	C26—C27—C28	120.3 (4)
C1—Co1—C32	150.69 (15)	С26—С27—Н27	119.9
C3—Co1—C32	122.29 (15)	С28—С27—Н27	119.9
C33—Co1—C32	39.82 (15)	C27—C28—C23	120.9 (4)
C2—Co1—C29	125.57 (15)	C27—C28—H28	119.6
C4—Co1—C29	140.44 (15)	C23—C28—H28	119.6

C1—Co1—C29	112.01 (15)	C34—C29—C30	126.1 (4)
C3—Co1—C29	168.57 (15)	C34—C29—C33	127.0 (4)
C33—Co1—C29	41.11 (16)	C30—C29—C33	106.9 (3)
C32—Co1—C29	67.61 (15)	C34—C29—Co1	126.3 (3)
C2—Co1—C30	112.71 (15)	C30—C29—Co1	70.6 (2)
C4—Co1—C30	175.54 (15)	C33—C29—Co1	68.7 (2)
C1—Co1—C30	133.08 (15)	C31—C30—C29	108.1 (3)
C3—Co1—C30	135.03 (15)	C31—C30—Co1	70.3 (2)
C33—Co1—C30	67.86 (15)	C29—C30—Co1	69.2 (2)
C32—Co1—C30	66.89 (15)	C31—C30—H30	126.0
C29—Co1—C30	40.20 (15)	С29—С30—Н30	126.0
C2—Co1—C31	127.49 (15)	Co1—C30—H30	126.1
C4—Co1—C31	143.75 (15)	C32—C31—C30	108.4 (3)
C1—Co1—C31	169.44 (15)	C32—C31—Co1	69.4 (2)
C3—Co1—C31	115.96 (15)	C30—C31—Co1	70.2 (2)
C33—Co1—C31	67.09 (15)	С32—С31—Н31	125.8
C32—Co1—C31	39.65 (15)	С30—С31—Н31	125.8
C29—Co1—C31	67.17 (15)	Co1—C31—H31	126.2
C30—Co1—C31	39.56 (15)	C33—C32—C31	108.8 (3)
C6—C5—C10	118.2 (3)	C33—C32—Co1	69.3 (2)
C6—C5—C1	120.7 (3)	C31—C32—Co1	70.9 (2)
C10C5C1	121.0 (3)	С33—С32—Н32	125.6
C7—C6—C5	120.5 (4)	С31—С32—Н32	125.6
С7—С6—Н6	119.8	Co1—C32—H32	125.7
С5—С6—Н6	119.8	C32—C33—C29	107.9 (3)
C6—C7—C8	120.7 (4)	C32—C33—Co1	70.9 (2)
С6—С7—Н7	119.7	C29—C33—Co1	70.2 (2)
С8—С7—Н7	119.7	С32—С33—Н33	126.1
C9—C8—C7	119.8 (4)	С29—С33—Н33	126.1
С9—С8—Н8	120.1	Co1—C33—H33	124.5
С7—С8—Н8	120.1	C35—C34—C29	177.7 (4)
C8—C9—C10	120.0 (4)	C34—C35—C36	178.6 (5)
С8—С9—Н9	120.0	C37—C36—C41	118.9 (4)
С10—С9—Н9	120.0	C37—C36—C35	121.4 (4)
C9—C10—C5	120.8 (4)	C41—C36—C35	119.7 (4)
C9—C10—H10	119.6	C36—C37—C38	119.6 (4)
C5C10H10	119.6	С36—С37—Н37	120.2
C16-C11-C12	118.2 (3)	С38—С37—Н37	120.2
C16—C11—C2	120.3 (3)	C39—C38—C37	120.5 (4)
C12—C11—C2	121.4 (3)	С39—С38—Н38	119.7
C13—C12—C11	120.7 (3)	C37—C38—H38	119.7
C13—C12—H12	119.6	C38—C39—C40	122.1 (4)
C11—C12—H12	119.6	С38—С39—Н39	119.0
C14—C13—C12	120.4 (3)	С40—С39—Н39	119.0
C14—C13—H13	119.8	C41—C40—C39	118.4 (4)
С12—С13—Н13	119.8	C41—C40—H40	120.8
C13—C14—C15	119.5 (3)	C39—C40—H40	120.8
C13—C14—H14	120.2	C40—C41—C36	120.4 (4)
C15—C14—H14	120.2	C40—C41—H41	119.8

C16—C15—C14	120.6 (3)	C36—C41—H41		119.8
Hydrogen-bond geometry (2	Å, °)			
Cg1 and Cg2 are the centro	oids of the C11–C16 and C	17–C22 phenyl rings, re	spectively.	
D—H··· A	<i>D</i> —.	Н Н··· <i>А</i>	$D \cdots A$	D—H···A
C32—H32···Cg1 ⁱ	0.95	2.66	3.460 (4)	142
C14—H14···Cg2 ⁱⁱ	0.95	2.86	3.674 (4)	144
C28—H28···Cg2 ⁱⁱⁱ	0.95	2.93	3.578 (4)	127
Symmetry codes: (i) x , $-y-1/2$	2, <i>z</i> -3/2; (ii) <i>x</i> , - <i>y</i> -1/2, <i>z</i> -1/2;	(iii) $-x+1, -y+1, -z+1$.		

Fig. 1

H48

Fig. 3

